科室与专家门诊

妙佑医疗国际是美国规模最大、经验最丰富的医疗机构之一,在亚利桑那州、佛罗里达州和明尼苏达州都设有院区。我们的工作人员涉及数十种专业,通过齐心协力确保高品质治疗与成功康复。

研究

实验室技术人员的照片

实验室技术人员正在制备用于检测的样本。

Mayo Clinic researchers have a rich history in advancing precision medicine for breast cancer. Accomplishments in this area include:

  • Finding new treatments for breast cancer.
  • Identifying an enzyme that regulates DNA repair.
  • Identifying subsets of people with breast cancer who do not benefit from medicines called aromatase inhibitors.
  • Identifying variations in the enzyme CYP2D6, which helps explain why some people with breast cancer don't respond to tamoxifen.
  • Developing a new medicine to replace tamoxifen for people with low CYP2D6 enzyme activity.
  • Developing a new medicine for breast cancer that is resistant to aromatase inhibitors.
  • Identifying mechanisms for why some people do not respond to endocrine treatment, and then developing a new medicine for breast cancer.

Mayo Clinic Comprehensive Cancer Center is one of a handful of facilities that received a U.S. National Cancer Institute Specialized Programs of Research Excellence (SPORE) grant for breast cancer research. Learn more about the Mayo Clinic Breast Cancer SPORE.

Publications

See a list of publications about breast cancer by Mayo Clinic doctors on PubMed, a service of the National Library of Medicine.

Research Profiles

Oct. 19, 2021
  1. Alisertib with or without fulvestrant in treating patients with locally advanced or metastatic, endocrine-resistant breast cancer. https://clinicaltrials.gov/ct2/show/NCT02860000. Accessed Sept. 9, 2017.
  2. BRCA1 and BRCA2: Cancer risk and genetic testing. National Cancer Institute. http://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet. Accessed June 13, 2017.
  3. Luo K, et al. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes & Development. 2016;30:1.
  4. Van Poznak C, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Oncology Practice. 2015;11:514.
  5. Goetz MP (expert opinion). Mayo Clinic, Rochester, Minn. Sept. 26, 2017.
  6. Gradishar WJ, et al. Invasive breast cancer version 1.2016. Clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2016;14:324.
  7. Studying genes. National Institute of General Medical Sciences. https://www.nigms.nih.gov/Education/pages/Factsheet_studyinggenes.aspx. Accessed June 13, 2017.
  8. AskMayoExpert. Genetic testing for BRCA1 and BRCA2 mutations. Rochester, Minn.: Mayo Foundation for Medical Education and Research; 2017.
  9. Mayo Clinic to be home of National Precision Medicine Initiative (PMI) Cohort Program Biobank. News release, Mayo Clinic, Rochester, Minnesota. Sept. 26, 2017.
  10. AskMayoExpert. Breast cancer. Rochester, Minn.: Mayo Foundation for Medical Education and Research; 2015.
  11. Goetz MP, et al. Tumor sequencing and patient-derived xenografts in the neoadjuvant treatment of breast cancer. Journal of the National Cancer Institute. 2017;109:djw306. Accessed June 12, 2017.
  12. Couch FJ, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncology. 2017;3:1190.
  13. Hamburg MA, et al. The path to personalized medicine. New England Journal of Medicine. 2010;363:301.
  14. Electronic Medical Records and Genomics (eMERGE) Network. National Human Genome Research Institute. https://www.genome.gov/27540473/electronic-medical-records-and-genomics-emerge-network/#al-2. Accessed June 12, 2017.
  15. Pritchard DE, et al. Strategies for integrating personalized medicine into healthcare practice. Personalized Medicine. 2017;14:141.
  16. The Personalized Medicine Coalition. Personalized Medicine at FDA: 2016 Progress Report. http://www.personalizedmedicinecoalition.org/Resources/Personalized_Medicine_at_FDA. Accessed June 13, 2017.
  17. Peshkin BN. Genetic counseling and testing for hereditary breast and ovarian cancer. http://www.uptodate.com/contents/search. Accessed June 13, 2017.
  18. Raby BA. Personalized medicine. https://www.uptodate.com/contents/search. Accessed June 13, 2017.
  19. Liu T, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nature Communication. 2017;8:13923.
  20. Ingle JN, et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a pharmacogenomics basis for the response of breast cancer patients to aromatase inhibitor therapy. Cancer Research. 2016;76:7012.
  21. Ingle JN, et al. Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids. 2015;99:32.
  22. Goetz MP, et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and Colorectal Cancer Study Group trial (ABCSG) 8. Clinical Cancer Research. 2013;19:500.
  23. Goetz MP, et al. First-in-human phase I study of the tamoxifen metabolite Z-endoxifen in women with endocrine-refractory metastatic breast cancer. Journal of Clinical Oncology. In press. Accessed Oct. 17, 2017.
  24. D'Assoro AB, et al. The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in Era(+) breast cancer cells. Oncogene. 2014;33:599.

乳腺癌精准医疗