Overview

Precision medicine for breast cancer is a way of finding the treatment that is most likely to help you. This approach may involve looking at your DNA or testing your cancer cells to see which treatments might work best.

Precision medicine for breast cancer also can help with diagnosis and prevention.

Precision medicine for breast cancer might be used to:

  • Look for variations in your DNA that might increase your risk of breast cancer and other types of cancer.
  • Understand how your body is likely to respond to a medicine by testing your DNA.
  • Choose the medicine that's most likely to work on your cancer cells by testing the DNA inside the cancer cells.
  • Look at other things that make up your cancer cells, such as certain proteins or markers on the surface of the cells. These things can tell your healthcare team whether a certain medicine is likely to work on your cancer.

Precision medicine also is called personalized medicine and individualized medicine.

Cancer care was one of the first medical specialties to use precision medicine. Some ways of using precision medicine in cancer care are commonly used in medical centers. Others might be available only in specialized medical centers. Many ways of using precision medicine are only available in clinical trials. This is an active area of cancer research.

Products & Services

Why it's done

Precision medicine for breast cancer is used to find the treatment that is most likely to help you. It also might be used in the diagnosis and prevention of breast cancer.

July 11, 2024
  1. Jorde LB, et al., eds. Genetics and precision medicine. In: Medical Genetics. 6th ed. Elsevier; 2020. htps://www.clinicalkey.com. Accessed Dec. 21, 2023.
  2. Cyr AE, et al. Individualizing breast cancer risk assessment in clinical practice. Surgical Oncology Clinics of North America. 2023; doi:10.1016/j.soc.2023.05.013.
  3. Khan SA. Breast cancer risk reduction: Current status and emerging trends to increase efficacy and reduce toxicity of preventive medication. Surgical Oncology Clincs of North America. 2023; doi:10.1016/j.soc.2023.05.001.
  4. Reizine NM, et al. Modern developments in germline pharmacogenomics for oncology prescribing. CA: A Cancer Journal for Clinicians. 2022; doi:10.3322/caac.21722.
  5. Biomarker testing for cancer treatment. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types/biomarker-testing-cancer-treatment. Accessed Dec. 22, 2023.
  6. Liu T, et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nature Communications. 2017; doi:10.1038/ncomms13923.
  7. Luo K, et al. A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes & Development. 2016; doi:10.1101/gad.289439.116.
  8. Ingle JN, et al. Genetic polymorphisms in the long noncoding RNA MIR2052HG offer a pharmacogenomic basis for the response of breast cancer patients to aromatase inhibitor therapy. Cancer Research. 2016; doi:10.1158/0008-5472.CAN-16-1371.
  9. Goetz MP, et al. CYP2D6 metabolism and patient outcome in the Austrian breast and colorectal cancer study group trial (ABCSG) 8. Clinical Cancer Research. 2013; doi:10.1158/1078-0432.CCR-12-2153.
  10. Goetz MP, et al. First-in-human phase I study of the tamoxifen metabolite z-endoxifen in women with endocrine-refractory metastatic breast cancer. Journal of Clinical Oncology. 2017; doi:10.1200/JCO.2017.73.3246.
  11. D'Assoro AB, et al. The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells. Oncogene. 2013; doi:10.1038/onc.2012.628.
  12. Ingle JN, et al. Estrogens and their precursors in postmenopausal women with early breast cancer receiving anastrozole. Steroids. 2015; doi:10.1016/j.steroids.2014.08.007.
  13. Jayaraman S, et al. Endoxifen, an estrogen receptor targeted therapy: From bench to bedside. Endocrinology. 2021; doi:10.1210/endocr/bqab191.
  14. Goetz MP, et al. Tumor sequencing and patient-derived xenografts in the neoadjuvant treatment of breast cancer. Journal of the National Cancer Institute. 2017; doi:10.1093/jnci/djw306.
  15. Hu C, et al. Classification of BRCA2 variants of uncertain significance (VUS) using an ACMG/AMP model incorporating a homology-directed repair (HDR) functional assay. Clinical Cancer Research. 2022; doi:10.1158/1078-0432.CCR-22-0203.
  16. Couch FJ, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncology. 2017; doi:10.1001/jamaoncol.2017.0424.
  17. Precision medicine initiative cohort program biobank. NIH RePORTER. https://reporter.nih.gov/search/QPpHrqO3ekG7Z4TLi-I3RA/project-details/10489966. Accessed Nov. 15, 2023.
  18. Biobank. National Institutes of Health. https://allofus.nih.gov/funding-and-program-partners/biobank. Accessed Nov. 15, 2023.
  19. 13th conference invited speakers. International Society for Applied Biological Sciences. https://isabs.hr/13th-conference-invited-speakers. Accessed Nov. 15, 2023.
  20. Founding members. Pharmacogenomics Global Research Network. https://pgrn.org/founders. Accessed Nov. 15, 2023.
  21. Members. Personalized Medicine Coalition. https://www.personalizedmedicinecoalition.org/membership/current-members. Accessed Nov. 15, 2023.
  22. Electronic Medical Records and Genomics (eMERGE) Network. National Human Genome Research Institute. https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE. Accessed Nov. 15, 2023.
  23. Member institutions. Alliance for Clinical Trials in Oncology. https://www.allianceforclinicaltrialsinoncology.org/main/public/standard.xhtml?path=%2FPublic%2FInstitutions. Accessed Nov. 15, 2023.
  24. Fowler GC, et al., eds. Pfenninger and Fowler's Procedures for Primary Care. 4th ed. Elsevier; 2020. https://www.clinicalkey.com. Accessed May 10, 2024.

Precision medicine for breast cancer