Clinical trials Mayo Clinic advances the science and practice of breast and melanoma surgical care with innovative therapies, new techniques and clinical trials. A Study to Evaluate the da Vinci® Xi™ Surgical System in Nipple Sparing Mastectomy (NSM) Procedures Read about ongoing breast surgery- and melanoma surgery-related clinical trials at Mayo Clinic. Below are current clinical trials.23 studies in Breast and Melanoma Surgical Oncology in Rochester (open studies only). Filter this list of studies by location, status and more. Understanding the Relationship Between Benign Breast Tissue, Benign Breast Disease, and Breast Cancer Development Jacksonville, Fla. The purpose of this study is to culture human mammary cells to identify cellular characteristics associated with lobular involution status. ACT-MBC: A Study of Circulating Tumor Cells (CTCs) in Metastatic Breast Cancer (MBC) (ACT-MBC) Rochester, Minn., Mankato, Minn., Eau Claire, Wis., Albert Lea, Minn. Collection of blood to track serial circulating tumor cells (CTCs) in subjects with metastatic breast cancer (MBC). Study will also collect data from investigators are Mayo Clinic and the Mayo Clinic Health Systems to determine effectiveness of the proposed process. MElanoma Research Lymph node prediction Implementation National_001 (MERLIN_001) Rochester, Minn. This study aims to create a registry for primary melanoma gene-signature to predict sentinel node (SN) status and determine its prognostic value for more accurate staging of SN-negative melanoma patients. Nemvaleukin Alfa (ALKS 4230) Monotherapy in Patients With Advanced Cutaneous Melanoma or Advanced Mucosal Melanoma Jacksonville, Fla., Rochester, Minn. The purpose of this study is to observe the antitumor activity, safety, tolerability, PK, and pharmacodynamics in patients with inoperable and/or metastatic melanoma following prior anti-PD-[L]-1 therapy. Trial of Multi-epitope HER2 Peptide Vaccine in Patients with HER2-expressing DCIS Jacksonville, Fla., Rochester, Minn. The purpose of this study is to determine the safety, effcicacy and tolerability of H2NVAC in patients with HER2-expressing DCIS in order to prevent future invasive breast cancer among patients who are diagnosed with DCIS. A Registry for the Collection and Maintenance of Biological Specimens for Breast Cancer Research Rochester, Minn. The purpose of this registry is to collect and maintain samples of breast tissue from women and men undergoing surgery for a breast related concern at Mayo Clinic Rochester, to create a biospecimen resource for the study of benign and cancerous breast conditions. A Study of 3-D Digital Mammography to Screen Patients for Breast Cancer Rochester, Minn., Scottsdale/Phoenix, Ariz. The purpose of this study is to evaluate digital tomosynthesis (3-D) mammography and digital mammography in screening patients for breast cancer. Screening for breast cancer with tomosynthesis mammography may be superior to digital mammography for breast cancer screening and may help reduce the need for additional imaging or treatment. IMC-F106C Regimen Versus Nivolumab Regimens in Previously Untreated Advanced Melanoma (PRISM-MEL-301) Jacksonville, Fla. The purpose of this study is for IMC-F106C plus nivolumab compared to standard nivolumab regimens in HLA-A*02:01-positive participants with previously untreated advanced melanoma. A Study to Establish a Living Breast Organoid Biobank for Translational Research Jacksonville, Fla., Rochester, Minn., Scottsdale/Phoenix, Ariz. Researchers at Mayo Clinic are developing a Biobank of adult stem cell-rich breast organoids, a new research resource to facilitate normal and cancer stem cell research. Subjects in the Biobank will provide samples of excess breast tissue, complete a health questionnaire, and allow access to medical records now and in the future. The Biobank serves as a library for researchers; instead of having to look for volunteers for each new project, researchers can use samples from the Biobank as well as share information already collected. Innovative CAR-TIL immunotherapy against melanoma Jacksonville, Fla. The chimeric antigen receptor (CAR) T-cell therapy is a revolutionary cellular immunotherapy strategy that has transformed the treatment of B cell malignancies by engineering T cells to recognize B cell specific tumor markers; however, attempts to treat solid tumors with CAR T-cells have identified unique challenges that have rendered CAR T cells less effective against these tumors. Conventional CARs are designed to target tumor-associated antigens, but antigenic heterogeneity and the variable nature of surface antigen expression provide escape mechanisms for solid tumors from CAR T-cell attack. [1, 2] The solid tumor stroma acts as an immunosuppressive cloud that impedes the homing of peripheral CAR T-cells into the tumor microenvironment (TME). The hostile TME can also drive CAR T-cells to functional exhaustion and metabolic dysfunction, thus blunting the therapeutic efficacy of CAR T-cells.[3] Oncolytic viruses or radiation that generate local inflammation in the TME have been shown to promote T cell homing and infiltration [4] but do not address the exhaustion of tumor infiltrating lymphocytes (TILs). The PD-1/PD-L1 cascade allows tumors to evade the immune system by suppressing T cell function within the TME. [5, 6] An ideal adoptive cellular therapy must possess the ability to not only return to the site of the tumor but must also retain cytotoxic potential after a recognition event. We present here a CAR design that allows PD-1 to recognize PD-L1 on the tumor; however, the intracellular CAR design is one that results in T cell activation as opposed to inhibition. We hypothesize that targeting melanoma with a PD-1 (MC9324) CAR TIL therapy would capitalize on the tumor homing machinery of the TIL to drive the CAR TIL to the tumor where engagement of the PD-1 domain of the CAR with PD-L1 on the tumor cell would result in T cell cytotoxic killing. Pagination Clinical studies Go to page 11 Go to page 22 Go to page 33 NextNext Page Request an appointment Expertise & rankingsResearch April 11, 2024 Share on: FacebookTwitter Breast and Melanoma Surgical Oncology in RochesterSectionsOverviewTests & proceduresConditions treatedDoctorsExpertise & rankingsClinical trialsResearchPatient storiesNews from Mayo ClinicCosts & insuranceReferrals Research: It's all about patients Show transcript for video Research: It's all about patients [MUSIC PLAYING] Joseph Sirven, M.D., Professor of Neurology, Mayo Clinic: Mayo's mission is about the patient. The patient comes first. So the mission and research here is to advance how we can best help the patient, how to make sure the patient comes first in care. So in many ways, it's a cycle. It can start with as simple as an idea worked on in a laboratory, brought to the patient bedside, and if everything goes right — and let's say it's helpful or beneficial — then brought on as a standard approach. And I think that is one of the unique characteristics of Mayo's approach to research — that patient-centeredness — that really helps to put it in its own spotlight. SectionsRequest an AppointmentOverviewTests & proceduresConditions treatedDoctorsExpertise & rankingsClinical trialsResearchPatient storiesNews from Mayo ClinicCosts & insuranceReferrals ORG-20535265 Medical Departments & Centers Breast and Melanoma Surgical Oncology in Rochester