临床试验 以下为当前的临床试验。500 研究 肿瘤科(内科) (仅限仍在招募的研究). 按院区、状态和其他条件筛选该研究列表。 A Study to Provide Access to CTL019 Out of Specification Managed Access Program (MAP) for ALL or DLBCL Patients Jacksonville, Fla., Scottsdale/Phoenix, Ariz. The purpose of this study is to provide access to CTL019 through Managed Access Program (MAP) for acute lymphoblastic leukemia (ALL) or diffuse large b-cell lymphoma (DLBCL) patients with out of specification leukapheresis product and/or manufactured tisagenlecleucel out of specification for commercial release. Innovative CAR-TIL immunotherapy against melanoma Jacksonville, Fla. The chimeric antigen receptor (CAR) T-cell therapy is a revolutionary cellular immunotherapy strategy that has transformed the treatment of B cell malignancies by engineering T cells to recognize B cell specific tumor markers; however, attempts to treat solid tumors with CAR T-cells have identified unique challenges that have rendered CAR T cells less effective against these tumors. Conventional CARs are designed to target tumor-associated antigens, but antigenic heterogeneity and the variable nature of surface antigen expression provide escape mechanisms for solid tumors from CAR T-cell attack. [1, 2] The solid tumor stroma acts as an immunosuppressive cloud that impedes the homing of peripheral CAR T-cells into the tumor microenvironment (TME). The hostile TME can also drive CAR T-cells to functional exhaustion and metabolic dysfunction, thus blunting the therapeutic efficacy of CAR T-cells.[3] Oncolytic viruses or radiation that generate local inflammation in the TME have been shown to promote T cell homing and infiltration [4] but do not address the exhaustion of tumor infiltrating lymphocytes (TILs). The PD-1/PD-L1 cascade allows tumors to evade the immune system by suppressing T cell function within the TME. [5, 6] An ideal adoptive cellular therapy must possess the ability to not only return to the site of the tumor but must also retain cytotoxic potential after a recognition event. We present here a CAR design that allows PD-1 to recognize PD-L1 on the tumor; however, the intracellular CAR design is one that results in T cell activation as opposed to inhibition. We hypothesize that targeting melanoma with a PD-1 (MC9324) CAR TIL therapy would capitalize on the tumor homing machinery of the TIL to drive the CAR TIL to the tumor where engagement of the PD-1 domain of the CAR with PD-L1 on the tumor cell would result in T cell cytotoxic killing. Open-label, Multi-center, Phase 1b/2 Clinical Trial to Evaluate the Safety and Efficacy of Autologous CAR-BCMA T-cells (CT053) in Patients Scottsdale/Phoenix, Ariz., Rochester, Minn. The purpose of this study is to evaluate Chimeric Antigen Receptor T Cells targeting BCMA in patients with myeloma. A Study to Evaluate the Safety and Effectiveness of ALLO-501A CAR T Cell Therapy in Adults with Relapsed/ Refractory Large B Cell Lymphoma Scottsdale/Phoenix, Ariz. The primary purpose of this study is to assess the safety and effectiveness of ALLO-501A to treat patients with relapsed/refractory large B cell lymphoma (LBCL) to determine the maximum tolerated dose (MTD). A Study to See if the Depth of Tumor Invasion of Esophageal Carcinoma Predicts Lymph Node Involvement and Cancer Free Survival Rochester, Minn. The purpose of this study is to see if different depths of submucosal tumor invasion in esophageal cancer can predict lymph node involvement and survival. Patient Derived Preclinical Models Rochester, Minn. The objective of this study is to collect tumor specimens (tumor tissues, matched normal tissue when possible, and 50 mL of blood) that may inform cancer biology to eventually improve outcomes for patients with cancer. Additionally, relevant specimens that were previously collected under an IRB approved protocol (13-000942), will be used with approval of the PI of that protocol and patient consent for participation in this protocol. The collected tissue specimens will be used to develop preclinical models; i.e., cell lines, patient derived micro-cancer models as well as patient-derived xenograft models. In this study we may profile tumors using genomic and/or proteomic approaches to identify targetable alterations in tumor tissue from patients. To assure that the derived cell lines and micro-cancer models have not been cross contaminated during development with other models in development, DNA sequencing may be used. Using these preclinical models, we will test new therapies in vitro, or in vivo in mice in order to identify novel therapeutics as well as interrogate genes for their role in tumor biology. Guidance for molecular targeted therapy will involve gene analysis of oncogenes and tumor suppressor genes. Results from these studies may provide the rationale for the design of future novel clinical trials. The evaluation of these preclinical models may lead to predictive value related to patient response to therapy as well as clinical trials. With consent, these models may be shared with other investigators internal or external to Mayo Clinic. ALPN-202 With PD-1 Inhibition in Advanced Malignancies Rochester, Minn., Scottsdale/Phoenix, Ariz., Jacksonville, Fla. The purpose of this study is to evaluate ALPN-202 with PD-1 inhibition to treat adults with advanced solid tumors or lymphoma. A Study to Assess Dynamic Changes in Plasma Proteome to Identify Early Detection and Treatment Response Biomarkers for HGSOC Rochester, Minn. This study aims to identify candidate High Grade Serous Cancer (HGSC) early detection and chemotherapy treatment response biomarkers. For the purpose of this study we define high grade serous cancers to include invasive cancers arising in the ovary and/or fallopian tubes (FT). Using mass spectrometry we will deeply profile and quantitate dynamic changes in the plasma proteome and N-gylcocapture sub-proteome that occur as a consequence of surgical debulking and platinum-based chemotherapy. A Study to Evaluate Personalized Molecular Marker and Immunoprofiling to Transform Hepatocellular Carcinoma Treatment Jacksonville, Fla. The purpose of this study is to evaluate whether profiling aggressive tumors for molecular alterations, together with drug testing in patient-derived 3D models, can provide crucial information for the identification of specific therapeutic targets. Additionally, immunoprofiling of microcancer model systems is crucially necessary data to enable prediction of immunotherapeutic efficacy. We postulate that our innovative approach will establish much needed immune microenvironment information and facilitate the identification of specific sensitivity profiles and biomarker signatures that correlate response to targeted agents (or combinations) with particular tumor profiles. Testing the Addition of Duvelisib or CC-486 to the Usual Treatment for Peripheral T-Cell Lymphoma Rochester, Minn. The purpose of this study is to evaluate the effect of duvelisib or CC-486 and usual chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone in treating patients with peripheral T-cell lymphoma. Duvelisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as CC-486, cyclophosphamide, doxorubicin, vincristine, etoposide and prednisone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial may help find out if this approach is better or worse than the usual approach for treating peripheral T-cell lymphoma. Pagination 临床研究 PrevPrevious Page Go to page 2424 Go to page 2525 Go to page 2626 Go to page 2727 Go to page 2828 NextNext Page 申请预约 专长与排名研究 May 09, 2023 妙佑医疗国际明尼苏达州罗切斯特院区、妙佑医疗国际佛罗里达州杰克逊维尔院区和妙佑医疗国际亚利桑那州凤凰城/斯科茨代尔院区均在《美国新闻与世界报道》2024-2025 全美最佳癌症医院评选中名列前茅。 了解更多关于这一最高荣誉的信息 肿瘤科(内科)科室首页部分概述主治医生专业团队专长与排名临床试验研究患者故事费用与保险Mayo Clinic 新闻转诊 研究完全以患者为中心。 请参见副本 供视频使用 研究完全以患者为中心。 [音乐播放] 妙佑医疗国际神经学教授 Joseph Sirven 医学博士:妙佑医疗的使命以患者为中心。患者第一。我们的使命和研究是为了更好地帮助患者,提供以患者为中心的护理。在很多方面,这是一个循环。这个过程可能很简单,就是先在实验室里出现一个想法,然后带到病床旁加以实施,如果一切顺利,对患者有所助益, 就形成标准。我认为这就是妙佑医疗国际研究方法的一个独特之处,而这种以患者为中心的方式,也是妙佑医疗在众多医疗机构中脱颖而出的原因之一。 部分预约门诊概述主治医生专业团队专长与排名临床试验研究患者故事费用与保险Mayo Clinic 新闻转诊 ORG-20180179 医学科室与中心 肿瘤科(内科)