Clinical trials Below are current clinical trials.474 studies in Oncology (Medical) (open studies only). Filter this list of studies by location, status and more. Immune Response to Antigens Jacksonville, Fla. The purpose of this study is to sequence patient germline and tumor samples, and nominate top neoantigen candidates using an in-house developed bioinformatics pipeline, and to validate the neoantigen candidates by laboratory assays using patient peripheral blood immune cells or serum. Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for the Treatment of Advanced Solid Tumors, The PNeoVCA Study Jacksonville, Fla. The purpose of this study ia to determine the safety and tolerability of personalized neoantigen peptide administered in combination with pembrolizumab to patients with advanced solid tumors. Patients' tumors will be sequenced during a pre-registration component or will have had successful sequencing pre-study. A personalized neoantigen peptide vaccine containing up to 20 unique peptides will be manufactured for each qualifying patient based on the results. Innovative CAR-TIL immunotherapy against melanoma Jacksonville, Fla. The chimeric antigen receptor (CAR) T-cell therapy is a revolutionary cellular immunotherapy strategy that has transformed the treatment of B cell malignancies by engineering T cells to recognize B cell specific tumor markers; however, attempts to treat solid tumors with CAR T-cells have identified unique challenges that have rendered CAR T cells less effective against these tumors. Conventional CARs are designed to target tumor-associated antigens, but antigenic heterogeneity and the variable nature of surface antigen expression provide escape mechanisms for solid tumors from CAR T-cell attack. [1, 2] The solid tumor stroma acts as an immunosuppressive cloud that impedes the homing of peripheral CAR T-cells into the tumor microenvironment (TME). The hostile TME can also drive CAR T-cells to functional exhaustion and metabolic dysfunction, thus blunting the therapeutic efficacy of CAR T-cells.[3] Oncolytic viruses or radiation that generate local inflammation in the TME have been shown to promote T cell homing and infiltration [4] but do not address the exhaustion of tumor infiltrating lymphocytes (TILs). The PD-1/PD-L1 cascade allows tumors to evade the immune system by suppressing T cell function within the TME. [5, 6] An ideal adoptive cellular therapy must possess the ability to not only return to the site of the tumor but must also retain cytotoxic potential after a recognition event. We present here a CAR design that allows PD-1 to recognize PD-L1 on the tumor; however, the intracellular CAR design is one that results in T cell activation as opposed to inhibition. We hypothesize that targeting melanoma with a PD-1 (MC9324) CAR TIL therapy would capitalize on the tumor homing machinery of the TIL to drive the CAR TIL to the tumor where engagement of the PD-1 domain of the CAR with PD-L1 on the tumor cell would result in T cell cytotoxic killing. Tebentafusp Regimen Versus Investigator's Choice in Previously Treated Advanced Melanoma (TEBE-AM) Rochester, Minn., Jacksonville, Fla., Scottsdale/Phoenix, Ariz. The purpose of this study is to evaluate the effectiveness and safety of tebentafusp-based regimens tebentafusp monotherapy and in combination with anti-PD1) vs investigator choice (including clinical trials of investigational agents, salvage therapy per local standard of care (SoC), best supportive care (BSC)) on protocol survivor follow up) in patients with advanced non-ocular melanoma. A Study to Evaluate Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients with Germ Cell Tumors Rochester, Minn. The purpose of this study is to evaluate how well bleomycin, carboplatin, etoposide, or cisplatin work in treating pediatric and adult patients with germ cell tumors. Active surveillance may help doctors to monitor subjects with low risk germ cell tumors after their tumor is removed. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. A Survey of Pheochromocytoma and Paraganglioma Patient Environment Rochester, Minn. The purpose of this study is to determine the association of environmental, geographic factors, as well as presence of comorbidities associated with hypoxia with development of pheochromocytomas and paragangliomas (PPGL), location of PPGL, and number of PPGL. Establishment of Preclinical Models from Patients with Gynecological Malignancies Rochester, Minn., Scottsdale/Phoenix, Ariz. Effective treatments for recurrent gynecological cancer are lacking, and there is a need for novel therapeutic options. One of the barriers to improving outcomes in this subgroup of patients is the paucity of tumor models that can mimic patient characteristics to study novel therapies. Patient-derived xenograft (PDX) models are considerate the most representative pre-clinical model of human cancer, recapitulating the key characteristics of the original patient tumor. Other preclincal models to test drug effcicacy includes ex vivo 3D culture and 2D culture systems. In this study, we make and test preclinical models of gynecological cancers (ovarian, fallopian tube, peritoneal, uterine, vulvar, cervix, and vaginal) of any histologic subtype using surplus tumor specimens obtained at the time of routine tumor biopsy procedure, or clinically-indicated surgery. Hypo-fractionated Proton Radiation Therapy With or Without Androgen Suppression for Intermediate Risk Prostate Cancer Scottsdale/Phoenix, Ariz. The purpose of this study is to compare the effects, good and/or bad of two treatment methods on subjects and their cancer. Proton beam radiation therapy is one of the treatments for men with prostate cancer who have localized disease. The benefit of the combination with androgen suppression is not completely understood. This study will compare the use of hypofraction proton therapy (28 treatments) alone to proton therapy with androgen suppression therapy. A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT Rochester, Minn. The purpose of this study is to monitor outcome to ensure that children and young adults with localized central nervous system (CNS) non-germinomatous germ cell tumors (NGGCT) treated with Induction chemotherapy followed by response evaluation and whole ventricular + spinal canal irradiation (WVSCI) will maintain the excellent 2-year progression free survival (PFS) rate as compared to ACNS0122. Also, to improve disease control by decreasing the number of spinal relapses for patients who achieve a complete response (CR) or partial response (PR) and receive WVSCI as compared to whole ventricular radiation on ACNS1123. Long-Term Follow-Up of Patients Who Have Participated in Children's Oncology Group Studies Rochester, Minn. This clinical trial is studying long-term follow-up in patients who are or have participated in Children's Oncology Group studies. Developing a way to track patients enrolled in Children's Oncology Group studies will help doctors gather long-term follow-up information and may help the study of cancer in the future. Pagination Clinical studies PrevPrevious Page Go to page 2121 Go to page 2222 Go to page 2323 Go to page 2424 Go to page 2525 NextNext Page Request an appointment Expertise & rankingsResearch May 09, 2023 Share on: FacebookTwitter Mayo Clinic in Rochester, Minnesota, Mayo Clinic in Jacksonville, Florida, and Mayo Clinic in Phoenix/Scottsdale, Arizona, have been recognized among the top Cancer hospitals in the nation for 2024-2025 by U.S. News & World Report. Learn more about this top honor Oncology (Medical)DepartmenthomeSectionsOverviewConditions treatedDoctorsSpecialty groupsExpertise & rankingsClinical trialsResearchPatient storiesCosts & insuranceNews from Mayo ClinicReferrals Research: It's all about patients Show transcript for video Research: It's all about patients [MUSIC PLAYING] Joseph Sirven, M.D., Professor of Neurology, Mayo Clinic: Mayo's mission is about the patient. The patient comes first. So the mission and research here is to advance how we can best help the patient, how to make sure the patient comes first in care. So in many ways, it's a cycle. It can start with as simple as an idea worked on in a laboratory, brought to the patient bedside, and if everything goes right — and let's say it's helpful or beneficial — then brought on as a standard approach. And I think that is one of the unique characteristics of Mayo's approach to research — that patient-centeredness — that really helps to put it in its own spotlight. SectionsRequest an AppointmentOverviewConditions treatedDoctorsSpecialty groupsExpertise & rankingsClinical trialsResearchPatient storiesCosts & insuranceNews from Mayo ClinicReferrals ORG-20180179 Medical Departments & Centers Oncology (Medical)