Overview

Neurosurgical expertise for complex and serious conditions

Mayo Clinic neurosurgical clinics and services are among the most advanced and comprehensive in the world. We offer the latest in lifesaving, technically demanding procedures that help adults and children with complex and serious conditions of the brain, spine and nervous system.

Our world-renowned neurosurgeons perform more than 9,300 surgeries each year. They are on the leading edge of advanced methods and technology. These include awake brain surgery, robotics, intraoperative MRI, computer-assisted brain surgery, stereotactic radiosurgery and deep brain stimulation. Our team is committed to improving the lives of all the people they treat.

A neurosurgeon checks a monitor during surgery.

Top ranked

Mayo Clinic in Rochester, Minnesota, Mayo Clinic in Phoenix/Scottsdale, Arizona, and Mayo Clinic in Jacksonville, Florida, are ranked among the Best Hospitals for neurology and neurosurgery in the U.S. News & World Report Best Hospitals rankings.

Advanced neurosurgical treatment

Our neurosurgeons offer neurosurgical clinics and services in cutting-edge facilities that include intraoperative MRI suites and systems to monitor how your brain, spinal cord, cranial nerves and other nerves are doing during surgery. This technique is called intraoperative neurophysiological monitoring, also called IONM. They are experts in other advanced methods such as microsurgery, radiosurgery and awake brain surgery. Mayo Clinic is one of only a few medical centers in the country to offer awake brain surgery. This approach is used to remove complex tumors safely in a way that lowers the risk to speech and other vital functions.

Seeing into the future: Transforming surgery through technology

[MUSIC PLAYING – PRINTER PRINTING]

Jonathan M. Morris, M.D., Medical Director, Anatomic Modeling Unit, Mayo Clinic: I'm often heard saying that a picture is worth a thousand words and that a model is worth a thousand pictures.

[MUSIC PLAYING]

A Mayo Clinic Production

With Moxie Pictures

PURSUING POSSIBLE

SEEING INTO THE FUTURE

[MUSIC PLAYING – PRINTER PRINTING]

This technology, it's really all about the patient. 3D printing has changed what we can do for them and how we do it. It's opened up new avenues of treatment that weren't possible before.

And it all started almost 20 years ago.

2006

The first case that led us to start down the road of 3D printing was the conjoined twins. So we had a set of girls who connected at the abdomen and chest. The surgeon and the radiologist would be working to try and understand the anatomy because eventually, you're going to have to try and separate them. Do they share a liver? Do they share intestines?

So one of the surgeons said, Can we make a physical copy of their liver? And they said, Well, why don't we 3D print it? So the first one we did, we outsourced, and it came back not looking like a liver. So we worked with the Department of Engineering to create some of the first models that were 3D printed. And it was the first time where a group of surgeons could hold a patient's liver in their hands outside the body. There were multiple surgeons from different subspecialties that had to talk about what they were going to do, and they used the model as a vehicle of communication in a way that you just can't from a 2D picture. You now have this new tool in your toolbox.

Our mission is to provide the best quality care. There are a whole host of patients that come with really complex problems that 3D printing helps solve. That 3D printed liver was the catalyst of what we've become today.

Eric J. Moore, M.D., Head and Neck Surgeon, Chair of Otolaryngology, Mayo Clinic: The 3D printing lab used to be a single room in a closetlike space. And now it's this beautiful sixth floor of the hospital. It's really almost surreal. You walk in and whole models of the thorax with the heart and all the blood vessels are being spun out.

Basel A. Sharaf, M.D., D.D.S., Plastic and Reconstructive Surgeon, Mayo Clinic: We're lucky to have one of the world's best 3D printing facilities that we speak about at a point of care. So meaning at the point of care of the patient, you're doing this at the hospital. And this is, I think, unique to the Mayo Clinic.

Peter S. Rose, M.D., Orthopedic Tumor Surgeon, Mayo Clinic: The 3D printing lab is open in the hospital. So it's not off site. As a surgeon, I walk up there between cases. I walk up there during rounds to check in on things.

Doctors discussing scans on a monitor: So you can see that there's a large tumor. You can see how intimately the vessels are draped over the front of it? Right. That's the biggest problem for us surgically to take the sides of the vessels. So, what do we see about the relationship of the aorta and the cava?

Dr. Morris: 90% of every patient that comes to Mayo Clinic will have some form of radiologic scan. Of that one scan, there might be 13,000 images, 13,000 images in four different phases, looking at arteries, veins, tumor, ureter, all of this information. An engineer is going to have to segment out every slice in order to make a 3D printed model. And we probably do about 3,000 models per year.

Each one of these printer rooms does something different. So this printer does powder-based printing. So each layer was being laid down layer by layer, a new layer of powder was coming in, and then it was dropping down and doing it over and over again until you get a 3-dimensional object. These printers are another technology. If you can imagine like a hot glue gun making a circle and then making another circle and then making another circle, you could start to build a 3D object.

This is another print technology. We use this to make full-color anatomic models. So if we want something like that's full color that has multiple small parts like this that has multiple small vessels, like these vessels of the pulmonary artery, or if we want to build training modules like this pulmonary tree with all the lymph nodes around it.

My goal is to help aid in the suffering of another human being. And this technology can provide better care to a greater number of people.

Doctor and technician talking: It would be great if we could remove part of the skull in the back. Yeah, to show better the tumor. That. Oh, yes. And I like that you removed the first cervical vertebra because that's like the approach that we're going to talk to the patient about. So that's really helpful.

Maria Peris Celda, M.D., Ph.D., Neurosurgeon, Mayo Clinic: Each tumor is different. For instance, we can see that this is really in the center of the base of the skull. So this is a tumor that is difficult to access. There's possibility of an approach through the nose. But there's also possibility of an approach through the side. That was important to decide what was best for the patient. I could touch and feel in real size what the tumor and the anatomy look like. And that has really changed my practice.

Here is the 3D model. You can see the tumors coming towards the front of their face.

Dr. Moore: Our planning is much better. 3-dimensional modeling has taken all the guesswork out of it, and it's made the process far more precise. These are really long operations. We used to have to take out the tumor, clear our margins, envision the defect, measure the hole, harvest the fibula, take that up, cut it, see if it fit. With this precise modeling, one of us will be taking out the tumor, the other one will be taking out the fibula, actually cut that in place while the legs still hooked up, these blood vessels are still hooked up, so that as soon as the tumor is out, this is ready to go. Then that patient can spend several hours less on the operating table and get a lot less IV fluid. And that translates into a lot quicker recovery.

Dr. Peris Celda: Every model is a case. But it's not just a case. It's a patient with a family. What were their fears and their anxieties?

Dr. Moore.: A model really helps us understand exactly where the tumor is. It's like a tremendous 3-dimensional roadmap. And this allows Dr. Price and I to make these really precise cuts.

Doctor and patient talking: So this is how we're going to put that back. Yeah. Okay. So this is, you know, your leg bone there that we're going to cut and bend into shape to rebuild your jaw bone and then we're going to put three implants in there, so we're going to get teeth in there. We'll get you chewing again. Yeah, that sounds like a really poor deal, though, pulling out seven, you only give me three back.

Dr. Rose: There are tremendous uncertainties for patients, and that leads to anxieties. Many of the patients who are referred to us have very rare tumors, and they may not have a good understanding of it. The ability to sit down with them with a model that shows their exact anatomy can be very valuable to build trust and build comfort as they move forward with the treatment of a rare tumor.

Doctor and patient's family member talking: Can I see the finished product? Oh, yeah. Yeah. So that's his leg bone there. Okay. We're going to cut it.

Dr. Sharaf: It's one thing to show them a CT scan or a diagram, but it's really another level of communication when they see their own 3D printed model. We can actually tell them, this is what we're going to do for you. These are the bones that we have to move. This is the symmetry we're trying to establish, and it brings a lot of clarity for the patient.

Doctor and patient's family member talking: Well, that model is amazing to be able to see. Yeah, isn't that incredible?

A. Noelle Larson, M.D., Orthopedic Surgeon, Mayo Clinic: Hi. How are you Olive? Every time I open a door and go into a clinic room, there's a family waiting for me that has a very eager expectation that I'm going to be able to help their child. It does look like your curve has progressed a little bit over the last few months, so I'm really glad we have this scheduled. It's getting to be the kind of scoliosis that could cause problems down the road later in life.

I tell my patients, Mayo has one or more of everything, and that really allows us to leverage the knowledge and the techniques and the technology to do surgeries that are not possible elsewhere. Mayo has really been a leader nationally in this field.

While you're asleep, we make an incision over your back, and the incision is kind of something like this from the top to the bottom. Move the muscles out of the way, place rods and screws over the back, and then we connect the screws to the rods and pull the spine into a straighter position.

We're dealing with unique patients, patients that have a deformity that's probably different from every other child in the world. Having a customized model is critical. At the end of the procedure, we roughen up the bone, and that kind of tricks the body into thinking that it had a fracture. And it kind of sets off this whole cascade of bone healing. And then all the areas that are spanned by the rods heal into a solid sheet of bone.

Dr. Rose: 3D modeling is incredibly helpful in operating on young children. Because on a scan, every CT scan looks the same size. But in real life, the anatomy for children is very different. 3D printed model in a child allows you to truly visualize the anatomy that you'll be dealing with.

Dr. Morris: As we expanded our 3D printing clinical uses, surgeons came to us that wanted simulation tools. It was clear that we could only get to a certain level of fidelity. And I thought, we need someone who has this skill set that's making special effects props for the industry that knows urethane casting, silicone molding, silicone painting, live casting. There's no job description in a 70,000-employee organization that says special effects engineer.

And we were just lucky enough to have Christian Hanson apply who had worked in the special effects industry. Ever since then, we've been making these bespoke custom simulators.

Christian Hanson, Simulation Engineer, Mayo Clinic: I've always been into special effects, makeup effects since high school. You know, I got into sculpture. I got some books on how to do masks and prosthetic makeup and things like that. I had plastic skulls when I was growing up, and I just stare at them. You know, my heart's always been in the makeup effects world. That's what I've always really had a passion for. Right, to put in as much detail, as much realism. I'm constantly pushing to capture, you know, tissue quality, the look of fat and muscle.

This model is a good example of where we use full-color 3D printing and digital painting to replicate the realistic surface of an internal thoracic cavity. It's a combination of the visual realism, and then also trying to get the way that the tissue is going to move and feel. Most of this approach isn't really a standardized way of building a model, so we're kind of making it up as we go to push the limits of what's possible.

Dr. Morris: This is a silicone molded skin that sits inside of a 3D printed base. The outside of this is what the practicing surgeon's going to see. This is going to be put together like that, and then it's going to be inside that cavity. So what the surgeon is going to see is this is going to be all toweled off. So then the surgeon will reach into the chest cavity and have to stop bleeding or other pulmonary trauma that we've built this for.

Daniel L. Price, M.D., Head and Neck Surgeon, Mayo Clinic: We've got a task trainer here for sewing two blood vessels together. So we have to make sure that we do this perfectly when we do it in the operating room. And the best way to do that is to have lots of experience, and we can get a ton of experience without any risk practicing these procedures.

Dr. Moore: We run a simulation program every year with our incoming residents. A surgeon will practice and perfect surgeries maybe a hundred times before they actually ever perform that surgery on a human body.

Dr. Price: I'd give myself a C plus 'cause we've got that little kink over here. I'd give you an A plus for each of these being pretty equal length sutures.

We have a patient coming up who has a tumor that's replaced most of his upper jaw. And we have to remove that tumor and therefore remove half of his upper jaw. And we rebuild that with bone from the leg. We're going to take his leg bone and fold that into the shape of his upper jaw bone. And then we're going to bring that nutrition to that bone by sewing the artery from the leg to an artery in the neck. And this is a task trainer that simulates that portion of the procedure, which is critical to the success.

Dr. Peris Celda: I envision 3D printing being more and more common. This is going to help advance science. This is going to help advance neurosurgery. It's a better result, and that's what we all want. We want the best result for our patients.

Dr. Celda and patient talking: This is the model that we looked at before the surgery, and this is the tumor that we removed. Makes it easier to see exactly what it looks like. It's hard to imagine just looking at the MRI, so, it's really helpful to see that. The model was pretty impressive to be able to see everything and where the tumor was, how big it was. I think it really helped put it into perspective. Looking at the model definitely made it feel more real.

So this is the tumor that we saw in the model. And here we see, after the tumor resection, how your spinal cord and the bottom of your brain really expanded.

I'm feeling pretty good, actually, yeah, surprisingly, pretty pretty good. On the road to recovery, definitely through the worst part, I think. Getting that tumor out was key. And now it's just recovering from here.

Dr. Morris: Since that set of conjoined twins, it's hard to believe how much time has passed and how far we've come. We're growing at an exponential rate. At some point, you need more space, more staff. So we built another 3D printing center at Jacksonville. We've expanded our operation to drive care. Now, another part of the country is doing the same exact thing that we're doing in Rochester.

Robert A. Pooley, Ph.D., Medical Physicist, Technical Director of the Anatomic Modeling Unit, Mayo Clinic: This is the anatomic modeling unit at Mayo Clinic in Florida. We work with physicians on campus, surgeons on campus, radiologists on campus. This is an evolving technology. There are not very many places around the country doing this.

Kingsley O. Abode-Iyamah, M.D., Neurosurgeon, Mayo Clinic: You can see how severe scoliosis is. This patient has previously undergone a fusion surgery. And so you can see this solid bone that has grown back here. Being able to look at things that we're not able to see just looking at traditional imaging gives you that comfort level to tackle more complex cases. So day to day function.

Jeffrey J. Janus, M.D., FACS, Head and Neck Cancer Surgeon, Chair of Otolaryngology, Mayo Clinic: The better service to the patient, the better care delivered to the patient as a result of this technology is immeasurable. And when you think about academic medicine, you think about how we're educating the next generations of surgeons. And so this technology isn't just about 3D printing, it's about 3-dimensional assessment and 3-dimensional tools. There's a ton that can be done with education in virtual space.

Dr. Morris: So virtual reality, it allows you to deal in educational spaces. We can build museum environments or O.R. environments. And that allows people to be trained in all of these different types of surgical approaches. Skull-based neurosurgery is a really steep learning curve. Traditionally, if you want to learn from Dr. Peris Celda or any of the skull-based surgeons, you have to physically be near them.

And what we're creating at Mayo Clinic are immersive environments to get you up to speed faster.

Dr. Moore: Medicine and surgery is an apprenticeship art, and you spend years doing it by repetition over and over. Think of how that educational process can be accelerated, just by all of the virtual practice that you could do, I think it's going to revolutionize the way we do surgical education.

Dr. Morris: When you went and got that CT scan, all that gave us images of your body one slice at a time. So what we've done is we've taken all those slices, and we've created a 3D model. So this is an image of you. That's your arms, that's your skeleton. And if you look back over your shoulder, you'll see where that green thing is is where the tumor is.

Dr. Sharaf: VR and AR is really the future of surgery, and artificial intelligence is going to play a big role.

Dr. Morris: This is a young woman who is 13 years old, who has a progressive curvature in her spine, which is really progressing fast over four months. And typically, in order to be able to make a model of this, a technologist would have to level by level hand color in each bone. But now that we have this AI algorithm, not only can it segment the bones, it can auto label which bone it is. Now we can go from a scan to this in about 4 minutes. The next step beyond the segmentation, beyond making the 3D models faster, are those predictive algorithms.

Dr. Sharaf: Let's say someone had a eye socket fracture on both sides, a case where everything is broken. The AI can actually tell you this is what this should look like. This is the best anatomic alignment of the fracture you're dealing with. Then this can be 3D printed. This is going to be really revolutionary for complex facial reconstruction.

Dr. Rose: The question is, can the next advance be what's called bioprinting? Instead of just an implant, can we attach antibiotics to that implant? Can we attach chemotherapy to an implant? And I think that variable will be our next frontier.

Dr. Morris: It's a tool that each surgeon that's used it has come back and said, This allowed me to do things in a way that I couldn't do before. Part of my mission in the last 10 years is to kind of be an evangelist of 3D printing and medicine because most patients will never come to Mayo Clinic. And unless we're helping people around the world, we're not impacting patients in the way that we feel this technology can. The mission of Mayo Clinic is the needs of the patient come first. This technology supports the mission. We're doing what's best for the patient. It's not about us, as surgeons, as physicians, as technologists, as innovators, that it's all for the patient.

PURSUING POSSIBLE

See how we are transforming healthcare at mayoclinic.org/possible.

[MUSIC PLAYING]

Robotic surgery used to place spinal screws. Robot-assisted spinal surgery

Mayo Clinic surgeons have performed more than 300 robot-assisted spinal surgeries, with positive early outcomes and less time in the operating room.

A team approach

Neurosurgeons at Mayo Clinic are part of teams of experts in other specialties. Together these teams provide comprehensive services and whole-person care. They may include neurologists, orthopedic surgeons, orthopedic oncologists, radiologists, anesthesiologists, endocrinologists, otolaryngologists, rehabilitation specialists, pain medicine specialists, radiation oncologists and others as needed.

Arizona

The Neurosurgery team at Mayo Clinic in Scottsdale, Arizona, specializes in treating conditions of the nervous system.

Mayo Clinic neurosurgeons in Scottsdale bring together neurological services and focused expertise in many specialty areas, such as:

  • Brain Tumor Program: Personalized, comprehensive, expert care to people with brain tumors.
  • Epilepsy specialty group: Diagnosis and treatment for people with epilepsy, rated by the National Association of Epilepsy Centers as a level 4 center, the highest ranking.

Top ranked

Mayo Clinic in Phoenix/Scottsdale, Arizona, has been ranked among the best neurology and neurosurgery hospitals in the nation for 2024-2025 by U.S. News & World Report.

Florida

The Neurosurgery team at Mayo Clinic in Jacksonville, Florida, specializes in treating conditions of the nervous system.

Mayo Clinic neurosurgeons in Jacksonville bring together neurological services and focused expertise in many specialty areas, such as:

Surgeons at Mayo Clinic in Jacksonville, Florida, may use a high-powered (7-tesla) MRI scanner. This scanner creates images of such detail that it can pinpoint the smallest defects — in some cases, those causing seizures. Other specialists within Neurosurgery in Florida offer focus and deep experience in complex and minimally invasive spine surgery, radiosurgery, deep brain stimulation, and brain mapping.

Top ranked

Mayo Clinic in Jacksonville, Florida, has been ranked among the best neurology and neurosurgery hospitals in the nation for 2024-2025 by U.S. News & World Report.

Minnesota

The Neurosurgery team at Mayo Clinic in Rochester, Minnesota, specializes in treating conditions of the nervous system.

Mayo Clinic neurosurgeons in Rochester, Minnesota, bring together neurological services and focused expertise in many specialty areas, such as:

Surgeons at Mayo Clinic in Rochester, Minnesota, may use a high-powered (7-tesla) MRI scanner. This scanner creates images of such detail that it can pinpoint the smallest defects — in some cases, those causing seizures.

In Minnesota pediatric neurosurgeons provide high-quality neurosurgical services. They work with other specialists to provide whole-person, coordinated care to children and adolescents with serious and complex conditions, including epilepsy, cerebral palsy, spina bifida and fetal defects. Children seen in the Pediatric Brain Tumor Clinic might have a team that also includes neuropsychologists, neuroradiologists, neuropathologists and others as needed.

Children who need care in a hospital may go to Mayo Eugenio Litta Children's Hospital at Mayo Clinic in Rochester, Minnesota. Nurses there are trained in treating children and adolescents with neurological conditions. Child life specialists help you and your child deal with natural concerns about illness, medical procedures and hospital care.

In addition, Mayo Clinic Health System clinics, hospitals and other healthcare facilities are in more than 39 communities in Minnesota and Wisconsin. These sites provide Mayo Clinic neurology and neurosurgery care to their local communities.

Top ranked

Mayo Clinic in Rochester, Minnesota, has been ranked among the best neurology and neurosurgery hospitals in the nation for 2024-2025 by U.S. News & World Report.

Mayo Clinic in Rochester, Minnesota, ranks among the Best Hospitals for neurology and neurosurgery and for cancer in the U.S. News & World Report rankings. Mayo Clinic Children's Center in Rochester is ranked the No. 1 hospital in Minnesota, and the five-state region of Iowa, Minnesota, North Dakota, South Dakota and Wisconsin, according to U.S. News & World Report's 2023–2024 "Best Children's Hospitals" rankings. With the emphasis on collaborative care, specialists interact very closely with their colleagues across all sites.

Choose Mayo Clinic

[MUSIC PLAYING]

Woman: I think Mayo is a truly unique institution. And what makes them so special is that they collaborate well, listen to each other, and most of all, they listen to the needs of the patient.

Robert Brown, Jr., M.D., Neurology, Mayo Clinic: The primary value of Mayo Clinic is the needs of the patient come first. And that's been the primary value of Mayo throughout its 150-year history.

Claudia Lucchinetti, M.D., Neurology, Mayo Clinic: We are focused on addressing the needs of our patients first and foremost.

Rahbi Tawk, M.D., Neurology, Mayo Clinic: That's what makes Mayo different. It's the model of care where people are not incentivized with anything but to take good care of patients.

Dr. Lucchinetti: It has to begin with listening to them.

Dr. Brown: Fortunately, here at Mayo we're afforded the time necessary to sit down and listen to them, to understand the nature of their symptoms.

Dr. Lucchinetti: That part of listening is really, I think, a central core of the clinic.

Michelle Clarke, M.D., Neurosurgery, Mayo Clinic: That pervades everything that we do. And that is a unique environment to work in.

John Atkinson, M.D., Neurosurgery, Mayo Clinic: Everybody here is a working unit. And coordination implies, just as it says, physicians interacting with other physicians.

Fredric Meyer, M.D., Neurosurgery, Mayo Clinic: More minds are better than one. So when you're evaluating a patient with a complex neurological problem.

Dr. Brown: We can bring colleagues from many different areas of medicine, expertise across virtually any field.

Lily Wong-Kisiel, M.D., Pediatric Neurology, Mayo Clinic: We all each bring different perspectives.

Dr. Lucchinetti: And that collective intelligence is something that, I feel, truly unique to the Mayo Clinic.

Dr. Atkinson: I think one of the strongest reasons patients come here is for that coordinated care.

Dr. Lucchinetti: We bring a tremendous expertise.

Dr. Meyer: Our Department of Neurosurgery is one of the largest neurosurgical practices in the world.

Dr. Atkinson: There is nothing that can be done anywhere on the planet that you cannot get here in the neurosurgical realm.

Dr. Lucchinetti: All aspects of neurological care is available at the Mayo Clinic.

Dr. Atkinson: The size, the scale, the infrastructure that supports us here, allows patients to be seen here and have a level of coordinated care that's difficult to duplicate anywhere else.

Dr. Meyer: We're very proud of our number one ranking in U.S. News and World Report. And it's something we've held many, many times.

Dr. Atkinson: We are recognized as being among the nation's very top, the very best in what we do, as neurologists and as neurosurgeons.

Dr. Brown: To see that high ranking is reaffirming for people. That they are doing the right thing. But we don't rest on our laurels, and we continue to try and do better, because our patients really deserve that.

Dr. Lucchinetti: Care of patients is about meeting their needs. Research is about meeting their unmet needs.

Dr. Meyer: Neurosurgery is one of those rare specialties of medicine that is greatly impacted by new discoveries and new treatments.

William Freeman, M.D., Neurosurgery, Mayo Clinic: Research is definitely something that Mayo does very well.

Dr. Brown: We consider research to support the practice by bringing the most cutting edge treatments and ideas to a patient's care.

Dr. Meyer: If they need surgery, they're going to have surgery done in a state-of-the-art operating room with the absolute best technology and equipment available.

Dr. Clarke: And that makes it much safer for patients.

Dr. Atkinson: The wedding, or the melding, visual imagery with robotics or other types of tools, works well in what we do.

Dr. Meyer: And that team approach, the expertise, the technology which we can apply to patients to treat them is truthfully why a patient should come here.

Dr. Brown: Because it's all about the people that are here. We have a group of colleagues who are very dedicated to the ideals of Mayo and to the primary value, which is, the needs of the patient come first.

Dr. Meyer: It's very meaningful to me and my colleagues. Our mission is really to do the best for our patients, and that's why we stay here at Mayo.

[MUSIC PLAYING]

Contact

Arizona

  • Neurosurgery
  • Mayo Clinic
  • 5777 East Mayo Boulevard
    Phoenix, AZ 85054
  • Phone: 480-301-8000

Florida

  • Neurosurgery
  • Mayo Clinic
  • 4500 San Pablo Road
    Mangurian, 4th Floor
    Jacksonville, FL 32224
  • Phone: 904-953-0818

Minnesota

  • Neurosurgery
  • Mayo Clinic
  • 200 First St. SW
    Gonda Building, 8th Floor
    Rochester, MN 55905
  • Phone: 507-284-8008
Feb. 06, 2025