Clinical trials Below are current clinical trials.27 studies in Dermatology (open studies only). Filter this list of studies by location, status and more. Study to Analyze the Metabolic Environment in Preventing Atopic Dermatitis Rochester, Minn. The purpose of this study is to compare the assessment of the composition of the fecal, nasal,oral and skin microbiota in patients with AD (cases) as compared to age/sex and diet matched control children without atopic dermatitis, and to apply mass-spectrometry-based metabolomic approach to analyzing fecal, nasal, oral and skin samples from cases, in order to characterize their biochemical metabolic profiles by comparison with those of their controls. C. Albicans during Early Life Predisposes Individuals to Atopy Rochester, Minn. The purpose of this study is to evaluate the contribution of C. albicans to dysbiotic microbial communities of mucosal tissues in pediatric populations. Prospective sampling across multiples tissue sites in a pediatric cohort will be used to assess which tissues are colonized by C. albicans and associated with microbial dysbiosis seen in atopic dermitis. We hypothesize presence of C. albicans in the microbial communities in early life is associated with atopy. We will assess the presence of C. albicans in the microbial communities of a population of children at-risk for atopic dermatitis compared to healthy controls who do not have an underlying risk for atopy based off family history. In tandem with the collection of human samples, we will utilize mouse models to validate the influence of C. albicans exposure during early life on the systemic immune populations. IMC-F106C Regimen Versus Nivolumab Regimens in Previously Untreated Advanced Melanoma (PRISM-MEL-301) Jacksonville, Fla. The purpose of this study is for IMC-F106C plus nivolumab compared to standard nivolumab regimens in HLA-A*02:01-positive participants with previously untreated advanced melanoma. An Expansion Study to Evaluate Dose Escalation, Safety and Tolerability of SAR444881 in Patients with Advanced Solid Tumors Rochester, Minn., Scottsdale/Phoenix, Ariz. The purpose of this study is to evaluate the safety, tolerability, and preliminary anti-tumor activity of SAR444881 alone and in combination with pembrolizumab or with cetuximab. The study will enroll advanced cancer patients with unresectable or metastatic disease who are refractory to or are not candidates for standard approved therapy and will be comprised of two parts - an initial "3 + 3" dose escalation phase (Part 1) with Sub-Parts 1A (monotherapy SAR444881), 1B (SAR444881 in combination with pembrolizumab) and 1C (SAR444881 in combination with cetuximab) followed by a dose optimization/expansion phase (Part 2), including Sub-Part 2A (Dose Optimization) with Cohorts A1 (SAR444881 in combination with pembrolizumab, carboplatin, and pemetrexed), A2 (SAR444881 in combination with pembrolizumab), B1 (SAR444881 in combination with pembrolizumab and later therapy), and C1 (SAR444881 in combination with cetuximab and later therapy), as well as Sub-Part 2B (Dose Expansion) with Cohort D1 (monotherapy SAR444881). Innovative CAR-TIL immunotherapy against melanoma Jacksonville, Fla. The chimeric antigen receptor (CAR) T-cell therapy is a revolutionary cellular immunotherapy strategy that has transformed the treatment of B cell malignancies by engineering T cells to recognize B cell specific tumor markers; however, attempts to treat solid tumors with CAR T-cells have identified unique challenges that have rendered CAR T cells less effective against these tumors. Conventional CARs are designed to target tumor-associated antigens, but antigenic heterogeneity and the variable nature of surface antigen expression provide escape mechanisms for solid tumors from CAR T-cell attack. [1, 2] The solid tumor stroma acts as an immunosuppressive cloud that impedes the homing of peripheral CAR T-cells into the tumor microenvironment (TME). The hostile TME can also drive CAR T-cells to functional exhaustion and metabolic dysfunction, thus blunting the therapeutic efficacy of CAR T-cells.[3] Oncolytic viruses or radiation that generate local inflammation in the TME have been shown to promote T cell homing and infiltration [4] but do not address the exhaustion of tumor infiltrating lymphocytes (TILs). The PD-1/PD-L1 cascade allows tumors to evade the immune system by suppressing T cell function within the TME. [5, 6] An ideal adoptive cellular therapy must possess the ability to not only return to the site of the tumor but must also retain cytotoxic potential after a recognition event. We present here a CAR design that allows PD-1 to recognize PD-L1 on the tumor; however, the intracellular CAR design is one that results in T cell activation as opposed to inhibition. We hypothesize that targeting melanoma with a PD-1 (MC9324) CAR TIL therapy would capitalize on the tumor homing machinery of the TIL to drive the CAR TIL to the tumor where engagement of the PD-1 domain of the CAR with PD-L1 on the tumor cell would result in T cell cytotoxic killing. Tebentafusp Regimen Versus Investigator's Choice in Previously Treated Advanced Melanoma (TEBE-AM) Rochester, Minn., Jacksonville, Fla., Scottsdale/Phoenix, Ariz. The purpose of this study is to evaluate the effectiveness and safety of tebentafusp-based regimens tebentafusp monotherapy and in combination with anti-PD1) vs investigator choice (including clinical trials of investigational agents, salvage therapy per local standard of care (SoC), best supportive care (BSC)) on protocol survivor follow up) in patients with advanced non-ocular melanoma. A Study to Evaluate Perceptions of Midline Sternotomy Scar in Children and Young Adults Rochester, Minn. The purpose of this study is to evaluate how children and young adults perceive their midline sternotomy scars (in terms of appearance, associated symptoms, consciousness, satisfaction with appearance/symptoms, and impact on quality of life)? A Study to Compare Nivolumab Administered Subcutaneously vs Intravenous in Melanoma Participants Following Complete Resection Jacksonville, Fla. The purpose of this study is to compare the drug levels of nivolumab administered subcutaneously versus intravenous administration in participants with melanoma following complete resection. Circulating Tumor Nucleic Acids to Monitor Treatment Response in Metastatic Melanoma Patients Scottsdale/Phoenix, Ariz. This project will investigate whether the analysis of nucleic acids circulating in the blood from tumors can allow real-time monitoring of treatment response to targeted therapy and immunotherapy for patients who have stage IV metastatic melanoma. BiCaZO: A Study Combining Two Immunotherapies (Cabozantinib and Nivolumab) to Treat Patients With Advanced Melanoma or Squamous Cell Head and Neck Cancer, an immunoMATCH Pilot Study Jacksonville, Fla., Scottsdale/Phoenix, Ariz. The purpose of this study is to evaluate the feasibility of molecular characterization based on tumor mutational burden (TMB) for participant stratification, as assessed by the proportion of participants with less than or equal to a 21-day turnaround time for biopsy results in Stage I of the study. Also, to evaluate the feasibility of molecular characterization based on TMB and gene expression profiling (GEP) (for TIS - tumor inflammation signature) for stratification in the overall study (Stage I and Stage II). Additinoally, to evaluate the effectiveness by overall response rate (ORR – defined as confirmed and unconfirmed partial responses plus complete responses) of cabozantinib plus nivolumab in each disease cohort, both across and within tumor biomarker subgroups. Pagination Clinical studies PrevPrevious Page Go to page 11 Go to page 22 Go to page 33 NextNext Page Request an appointment Specialty groupsResearch Aug. 28, 2024 Share on: FacebookTwitter DermatologySectionsOverviewTests & proceduresConditions treatedDoctorsSpecialty groupsClinical trialsResearchCosts & insuranceNews from Mayo ClinicReferrals Research: It's all about patients Show transcript for video Research: It's all about patients [MUSIC PLAYING] Joseph Sirven, M.D., Professor of Neurology, Mayo Clinic: Mayo's mission is about the patient. The patient comes first. So the mission and research here is to advance how we can best help the patient, how to make sure the patient comes first in care. So in many ways, it's a cycle. It can start with as simple as an idea worked on in a laboratory, brought to the patient bedside, and if everything goes right — and let's say it's helpful or beneficial — then brought on as a standard approach. And I think that is one of the unique characteristics of Mayo's approach to research — that patient-centeredness — that really helps to put it in its own spotlight. SectionsRequest an AppointmentOverviewTests & proceduresConditions treatedDoctorsSpecialty groupsClinical trialsResearchCosts & insuranceNews from Mayo ClinicReferrals ORG-20420337 Medical Departments & Centers Dermatology